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7 Sequences of real numbers

7.1 Definitions and examples

Definition 7.1.1. A sequence of real numbers is a real function whose domain is the set N of
natural numbers.

Let s : N → R be a sequence. Then the values of s are s(1), s(2), s(3), . . . , s(n), . . . . It is
customary to write sn instead of s(n) in this case. Sometimes a sequence will be specified by
listing its first few terms

s1, s2, s3, s4, . . . ,

and sometimes by listing of all its terms {sn}n∈N or {sn}+∞

n=1. One way of specifying a sequence
is to give a formula, or recursion formula for its n−th term sn. Notice that in this notation s is
the “name” of the sequence and n is the variable.

Some examples of sequences follow.

Example 7.1.2. (a) 1, 0, −1, 0, 1, 0, −1, . . . ;

(b) 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, . . . ;

(c) 1, 1, 1, 1, 1, . . . ; (the constant sequence)
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Recursively defined sequences

Example 7.1.3. (a) x1 = 1, xn+1 = 1 +
xn

4
, n = 1, 2, 3, . . . ;

(b) x1 = 2, xn+1 =
xn

2
+

1

xn

, n = 1, 2, 3, . . . ;

(c) a1 =
√

2, an+1 =
√

2 + an, n = 1, 2, 3, . . . ;

(d) s1 = 1, sn+1 =
√

1 + sn, n = 1, 2, 3, . . . ;

(e) x1 = 0.9, xn+1 =
9 + xn

10
, n = 1, 2, 3, . . . .

(f) b1 =
1

2
, bn+1 =

1

2
√

1 − b2
n

, n = 1, 2, 3, . . .

(g) f1 = 1, fn+1 = (n + 1) fn, n = 1, 2, 3, . . . .

Some important examples of sequences are listed below.
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bn = c, c ∈ R. n ∈ N, (7.1.1)

pn = an, a ∈ R, n ∈ N, (7.1.2)

xn =

(

1 +
1

n

)n

, n ∈ N, (7.1.3)

yn =

(

1 +
1

n

)(n+1)

, n ∈ N, (7.1.4)

zn =
(

1 +
a

n

)n

, n ∈ N, (7.1.5)

f1 = 1, fn+1 = fn · (n + 1), n ∈ N. (7.1.6)

(The standard notation for the terms of the sequence {fn}+∞

n=1 is fn = n!, n ∈ N.)

qn =
an

n!
, a ∈ R, n ∈ N, (7.1.7)

t1 = 1, tn+1 = tn +
1

n!
n ∈ N, (7.1.8)

v1 = 1, vn+1 = vn +
an

n!
n ∈ N. (7.1.9)

Let {an}+∞

n=1 be an arbitrary sequence. An important sequence associated with {an}+∞

n=1 is the
following sequence

S1 = a1, Sn+1 = Sn + an+1, n ∈ N. (7.1.10)

7.2 Convergent sequences

Definition 7.2.1. A sequence {sn}+∞

n=1 of real numbers converges to the real number L if for
each ǫ > 0 there exists a number N(ǫ) such that

n ∈ N, n > N(ǫ) ⇒ |sn − L| < ǫ.

If {sn}+∞

n=1 converges to L we will write

lim
n→+∞

sn = L or sn → L (n → +∞).

The number L is called the limit of the sequence {sn}+∞

n=1. A sequence that does not converge to
a real number is said to diverge.

Example 7.2.2. Let r be a real number such that |r| < 1. Prove that limn→+∞ rn = 0.

Solution. First note that if r = 0, then rn = 0 for all n ∈ N, so the given sequence is a constant
sequence. Therefore it converges. Let ǫ > 0. We need to solve |rn − 0| < ǫ for n. First simplify
|rn − 0| = |rn| = |r|n. Now solve |r|n < ǫ by taking ln of both sides of the inequality (note that
ln is an increasing function)

ln |r|n = n ln |r| < ln ǫ.
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Since |r| < 1, we conclude that ln |r| < 0. Therefore the solution is n >
ln ǫ

ln |r| . Thus, with

N(ǫ) =
ln ǫ

ln |r| , the implication

n ∈ N, n > N(ǫ) ⇒ |rn − 0| < ǫ

is valid.

Example 7.2.3. Prove that lim
n→+∞

n2 − n − 1

2n2 − 1
=

1

2
.

Solution. Let ǫ > 0 be given. We need to solve
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< ǫ for n. First simplify:
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∣

∣
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∣
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∣
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∣
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∣

∣
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−2n − 1

2 (2n2 − 1)
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∣

∣

∣

=
2n + 1

4n2 − 2

Now invent the BIN:
2n + 1

4n2 − 2
≤ 2n + n

4n2 − 2n2
=

3n

2n2
=

3

2n
.

Therefore the BIN is:
∣

∣

∣

∣

n2 − n − 1

2n2 − 1
− 1

2

∣

∣

∣

∣

≤ 5

2n
valid for n ∈ N.

Solving for n is now easy:

3

2n
< ǫ. The solution is n >

3

2ǫ
.

Thus, with N(ǫ) =
3

2ǫ
, the implication

n > N(ǫ) ⇒
∣

∣

∣

∣

n2 − n − 1

2n2 − 1
− 1

∣

∣

∣

∣

< ǫ

is valid. Using the BIN, this implication should be easy to prove.

This procedure is very similar to the procedure for proving limits as x approaches infinity. In
fact the following two theorems are true.

Theorem 7.2.4. Let x 7→ f(x) be a function which is defined for every x ≥ 1. Assume that
lim

x→+∞

f(x) = L. If the sequence {an}+∞

n=1 is defined by

an = f(n), n = 1, 2, 3, . . . ,

then lim
n→+∞

an = L.
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Theorem 7.2.5. Let x 7→ f(x) be a function which is defined for every x ∈ [−1, 0) ∪ (0, 1].
Assume that lim

x→0
f(x) = L. If the sequence {an}+∞

n=1 is defined by

an = f(1/n), n = 1, 2, 3, . . . ,

then lim
n→+∞

an = L.

The above two theorems are useful for proving limits of sequences which are defined by a
formula. For example you can prove the following limits by using these two theorems and what
we proved in previous sections.

Exercise 7.2.6. Find the following limits. Provide proofs.

(a) lim
n→+∞

sin

(

1

n

)

(b) lim
n→+∞

n sin

(

1

n

)

(c) lim
n→+∞

ln

(

1 +
1

n

)

(d) lim
n→+∞

n ln

(

1 +
1

n

)

(e) lim
n→+∞

cos

(

1

n

)

(f) lim
n→+∞

1

n
cos

(

1

n

)

The Algebra of Limits Theorem holds for sequences.

Theorem 7.2.7. Let {an}+∞

n=1, {bn}+∞

n=1 and {cn}+∞

n=1, be given sequences. Let K and L be real
numbers. Assume that

(1) lim
x→+∞

an = K,

(2) lim
x→+∞

bn = L.

Then the following statements hold.

(A) If cn = an + bn, n ∈ N, then lim
x→+∞

cn = K + L.

(B) If cn = anbn, n ∈ N, then lim
x→+∞

cn = KL.

(C) If L 6= 0 and cn =
an

bn
, n ∈ N, then lim

x→+∞

cn =
K

L
.

Theorem 7.2.8. Let {an}+∞

n=1 and {bn}+∞

n=1 be given sequences. Let K and L be real numbers.
Assume that

(1) lim
x→+∞

an = K.

(2) lim
x→+∞

bn = L.

(3) There exists a natural number n0 such that

an ≤ bn for all n ≥ n0.

Then K ≤ L.
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Theorem 7.2.9. Let {an}+∞

n=1, {bn}+∞

n=1 and {sn}+∞

n=1 be given sequences. Assume the following

1. The sequence {an}+∞

n=1 converges to the limit L.

2. The sequence {bn}+∞

n=1 converges to the limit L.

3. There exists a natural number n0 such that

an ≤ sn ≤ bn for all n > n0.

Then the sequence {sn}+∞

n=1 converges to the limit L.

Prove this theorem.

7.3 Sufficient conditions for convergence

Many limits of sequences cannot be found using theorems from the previous section. For example,
the recursively defined sequences (a), (b), (c), (d) and (e) in Example 7.1.3 converge but it cannot
be proved using the theorems that we presented so far.

Definition 7.3.1. Let {sn}+∞

n=1 be a sequence of real numbers.

1. If a real number M satisfies

sn ≤ M for all n ∈ N

then M is called an upper bound of {sn}+∞

n=1 and the sequence {sn}+∞

n=1 is said to be bounded
above.

2. If a real number m satisfies
m ≤ sn for all n ∈ N,

then m is called a lower bound of {sn}+∞

n=1 and the sequence {sn}+∞

n=1 is said to be bounded
below.

3. The sequence {sn}+∞

n=1 is said to be bounded if it is bounded above and bounded below.

Theorem 7.3.2. If a sequence converges, then it is bounded.

Proof. Assume that a sequence {an}+∞

n=1 converges to L. By Definition 7.2.1 this means that for
each ǫ > 0 there exists a number N(ǫ) such that

n ∈ N, n > N(ǫ) ⇒ |an − L| < ǫ.

In particular for ǫ = 1 > 0 there exists a number N(1) such that

n ∈ N, n > N(1) ⇒ |an − L| < 1.

Let n0 be the largest natural number which is ≤ N(1). Then n0 + 1, n0 + 2, . . . are all > N(1).
Therefore

|an − L| < 1 for all n > n0.
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This means that
L − 1 < an < L + 1 for all n > n0.

The numbers L− 1 and L + 1 are not lower and upper bounds for the sequence since we do not
know how they relate to the first n0 terms of the sequence. Put

m = min{a1, a2, . . . , an0 , L − 1}
M = max{a1, a2, . . . , an0 , L + 1}.

Clearly

m ≤ an for all n = 1, 2, . . . , n0

m ≤ L − 1 < an for all n > n0.

Thus m is a lower bound for the sequence {an}+∞

n=1.
Clearly

an ≤M for all n = 1, 2, . . . , n0

an < L + 1 ≤M for all n > n0.

Thus M is an upper bound for the sequence {an}+∞

n=1.

Is the converse of Theorem 7.3.2 true? The converse is: If a sequence is bounded, then it
converges. Clearly a counterexample to the last implication is the sequence (−1)n, n ∈ N. This
sequence is bounded but it is not convergent.

The next question is whether boundedness and an additional property of a sequence can
guarantee convergence. It turns out that such an property is monotonicity defined in the following
definition.

Definition 7.3.3. A sequence {sn}+∞

n=1 of real numbers is said to be

non-decreasing if sn ≤ sn+1 for all n ∈ N,

strictly increasing if sn < sn+1 for all n ∈ N,

non-increasing if sn ≥ sn+1 for all n ∈ N.

strictly decreasing if sn > sn+1 for all n ∈ N.

A sequence with either of these four properties is said to be monotonic.

The following two theorems give powerful tools for establishing convergence of a sequence.

Theorem 7.3.4. If {sn}+∞

n=1 is non-decreasing and bounded above, then {sn}+∞

n=1 converges.

Theorem 7.3.5. If {sn}+∞

n=1 is non-increasing and bounded below, then {sn}+∞

n=1 converges.

To prove these theorems we have to resort to the most important property of the set of real
numbers: the Completeness Axiom.

The Completeness Axiom. If A and B are nonempty subsets of R such that for every a ∈ A
and for every b ∈ B we have a ≤ b, then there exists c ∈ R such that a ≤ c ≤ b for all a ∈ A and
all b ∈ B.
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For a special choice of the sets A and B the Completeness Axiom visually corresponds to the
following picture

A B

c
e

In some sense the Completeness Axiom claims that the (real) number line has no holes.
Now we can prove Theorem 7.3.4.

Proof of Theorem 7.3.4. Assume that {sn}+∞

n=1 is a non-decreasing sequence and that it is bounded
above. Since {sn}+∞

n=1 is non-decreasing we know that

s1 ≤ s2 ≤ s3 ≤ · · · ≤ sn−1 ≤ sn ≤ sn+1 ≤ · · · . (7.3.1)

Let A be the range of the sequence {sn}+∞

n=1. That is A =
{

sn : n ∈ N
}

. Clearly A 6= ∅. Let
B be the set of all upper bounds of the sequence {sn}+∞

n=1. Since the sequence {sn}+∞

n=1 is bounded
above, the set B is not empty. Let b ∈ B be arbitrary. Then b is an upper bound for {sn}+∞

n=1.
Therefore

sn ≤ b for all n ∈ N.

By the definition of A this means

a ≤ b for all a ∈ A.

Since b ∈ B was arbitrary we have

a ≤ b for all a ∈ A and for all b ∈ B.

By the Completeness Axiom there exists c ∈ R such that

sn ≤ c ≤ b for all n ∈ N and for all b ∈ B. (7.3.2)

Thus c is an upper bound for {sn}+∞

n=1 and also c ≤ b for all upper bounds b of the sequence
{sn}+∞

n=1. Therefore, for an arbitrary ǫ > 0 the number c− ǫ (which is < c) is not an upper bound
of the sequence {sn}+∞

n=1. Consequently, there exists a natural number N(ǫ) such that

c − ǫ < s
N(ǫ)

. (7.3.3)

Let n ∈ N be any natural number which is > N(ǫ). Then the inequalities (7.3.1) imply that

s
N(ǫ)

≤ sn. (7.3.4)

By (7.3.2) c is an upper bound of {sn}+∞

n=1. Hence we have

sn ≤ c for all n ∈ N. (7.3.5)

Putting together the inequalities (7.3.3), (7.3.4) and (7.3.5) we conclude that

c − ǫ < sn ≤ c for all n ∈ N such that n > N(ǫ). (7.3.6)
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The relationship (7.3.6) shows that for n ∈ N such that n > N(ǫ) the distance between numbers
sn and b is < ǫ. In other words

n ∈ N, n > N(ǫ) implies |sn − c| < ǫ.

This is exactly the implication in Definition 7.2.1. Thus, we proved that

lim
n→+∞

sn = c.

Example 7.3.6. Consider the recursively defined sequence

u1 =
1

2
, un+1 = 2 +

5

8
un, n = 1, 2, 3, . . . .

Prove that this sequence converges and find its limit.

Solution. Calculating the first few terms of the sequence we get the idea that it is increasing.
Then we observe the equivalences

un < un+1 ⇔ un < 2 +
5

8
un ⇔ 3

8
un < 2 ⇔ un <

16

3
(7.3.7)

Now we shall prove that un <
16

3
for all n = 1, 2, 3, . . ..

Step 1 Since u1 =
1

2
<

16

3
, the inequality un <

16

3
is true for n = 1.

Step 2 Let k be a natural number. Assume that uk <
16

3
. Then

5

8
uk <

10

3
. Adding 2 to both

sides of the inequality, we conclude that 2 +
5

8
uk < 2 +

10

3
. Thus uk+1 <

16

3
.

By the Principle of Mathematical induction it follows that

un <
16

3
for all n = 1, 2, 3, . . . . (7.3.8)

Thus the sequence {un}+∞

n=1 is bounded above.
The equivalences in (7.3.7) and (7.3.8) imply that the sequence {un}+∞

n=1 is increasing.
Since {un}+∞

n=1 is increasing and bounded above, Theorem 7.3.4 implies that it converges:

lim
n→+∞

un = L.

The sequence {un+1}+∞

n=1 consists of the same terms as the sequence {un}+∞

n=1 except u1. There-
fore

lim
n→+∞

un+1 = L . (7.3.9)

Using the algebra of limits we calculate

lim
n→+∞

un+1 = lim
n→+∞

(

2 +
5

8
un

)

= 2 +
5

8
lim

n→+∞

un = 2 +
5

8
L . (7.3.10)
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Comparing (7.3.9) and (7.3.10) we conclude that L must satisfy the equation

L = 2 +
5

8
L .

Solving for L, we get L =
16

3
. This proves that lim

n→+∞

un =
16

3

Remark 7.3.7. Here we illustrate the procedure of Example 7.3.6 on the graph of the function

f(x) = 2 +
5

8
x. By the definition of the sequence {un}+∞

n=1, we have

u1 =
1

2
, un+1 = f(un), n = 1, 2, 3, . . . . (7.3.11)

This formula implies that the sequence {un}+∞

n=1 is generated by repeated application of the
function f :

u1, u2 = f(u1),

u3 = f(u2) = f(f(u1)), u4 = f(u3) = f(f(f(u1))),

u5 = f(u4) = f(f(f(f(u1)))), u6 = f(u5) = f(f(f(f(f(u1))))), . . .

This procedure can very nicely be
illustrated on the graph of the func-
tion f . We start with u1 and eval-
uate the value f(u1) = u2. The
value of u2 is visualized as a vertical
length. To turn it into horizontal
length we use the line y = x as in-
dicated on the graph. This process
continues and we find u3, u4, . . ..
The graph indicates that the se-
quence converges to the solution of
the equation x = f(x). This is true
since we obtained the value for L by
solving the equation L = f(L). No-
tice that this graph does not prove
that the sequence converges. It only
illustrates what was done in the so-
lution for Example 7.3.6.

u1

u2

u2

u3

u3

u4

u4

u5

u5

u6

u6

u7

x

y

y = f(x)

y = x

Remark 7.3.8. Notice that the expression (7.3.11) was essential to produce the illustration above.
The expression (7.3.11) is possible because the formula for un+1 in Example 7.3.6 depends only
on un (that is it does not involve n). In Example 7.3.9 below we study the sequence

t1 = 1, tn+1 = tn +
1

n + 1
− ln

(

1 +
1

n

)

, n = 1, 2, 3, . . . .
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For this sequence there is no function x 7→ f(x) for which the formula tn+1 = f(tn) would
generate the sequence {tn}+∞

n=1.

Example 7.3.9. Prove that the sequence

tn = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

n
− ln n, n = 1, 2, 3, . . . ,

converges.

Solution. Use the definition of ln as the integral to prove that for n > 1

tn >

∫ n

1

(

1

Floor(x)
− 1

x

)

dx.

Deduce that tn > 0.

Represent

tn − tn+1 =
(

ln(n + 1) − ln n
)

− 1

n + 1

as an area (or a difference of two areas). Conclude that tn − tn+1 > 0. Then use one of the
preceding theorems.

Example 7.3.10. Consider the sequence s1 = 1, sn+1 =
√

1 + sn, n = 1, 2, 3, . . .. Prove that
this sequence converges and find its limit.

Solution. We calculated the first few terms of the sequence and we got the idea that the sequence
is increasing. Therefore we shall prove that 0 < sn < sn+1 for all n = 1, 2, 3, . . ..

Step 1 Since 0 < s1 = 1 <
√

1 + 1 = s2, we conclude that the inequality 0 < sn < sn+1 is true
for n = 1.

Step 2 Let k be a natural number. Assume that 0 < sk < sk+1. Then 0 < 1 + sk < 1 + sk+1.
Taking the square roots, we conclude that 0 <

√
1 + sk <

√
1 + sk+1. By the definition of

the sequence {sn}+∞

n=1 this implies that 0 < sk+1 < sk+2.

By the Principle of Mathematical induction it follows that

sn < sn+1 for all n = 1, 2, 3, . . . . (7.3.12)

Thus the sequence {sn}+∞

n=1 is increasing.

Now we decide to prove that sn < 2 for all n = 1, 2, 3, . . .. This is my guess, we hope that
we will be able to prove it.

Step 1 Since s1 = 1 < 2, the inequality sn < 2 is true for n = 1.

Step 2 Let k be a natural number. Assume that sk < 2. Then 1 + sk < 3 and consequently
1 + sk < 4. Taking the square roots we conclude that

√
1 + sk < 2. Thus sk+1 < 2.
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By the Principle of Mathematical induction it follows that

sn < 2 for all n = 1, 2, 3, . . . .

Thus the sequence {sn}+∞

n=1 is bounded above.
Since {sn}+∞

n=1 is increasing and bounded above, Theorem 7.3.4 implies that it converges:

lim
n→+∞

sn = L.

The sequence {sn+1}+∞

n=1 consists of the same terms as the sequence {sn}+∞

n=1 except s1. There-
fore

lim
n→+∞

sn+1 = L .

From the definition of the sequence {sn}+∞

n=1, we conclude that

s2
n+1 = 1 + sn, for all n = 1, 2, 3, . . . . (7.3.13)

Now we use the algebra of limits to calculate

lim
n→+∞

s2
n+1 = lim

n→+∞

sn+1 sn+1 = L L = L2 , (7.3.14)

and

lim
n→+∞

s2
n+1 = lim

n→+∞

(

1 + sn

)

= 1 + L . (7.3.15)

Since in (7.3.14) and (7.3.15) we are calculating the limit of the same sequence, we conclude that
the resulting limit must be same:

L2 = 1 + L.

Solving this equation for L we get two solutions

L1 =
1 +

√
1 + 4

2
and L2 =

1 −
√

1 + 4

2
.

Only one of these solutions is the limit of our sequence. Since sn > 0 for all n = 1, 2, 3, . . ., we
conclude that L must be positive. This eliminates L2 as a possible limit. Therefore we proved
that

lim
n→+∞

sn =
1 +

√
5

2
.

Exercise 7.3.11. Illustrate Example 7.3.10 in the same way as Example 7.3.6 was illustrated in
Remark 7.3.7.

Example 7.3.12. Consider the sequence x1 = 2, xn+1 =
xn

2
+

1

xn
, n = 1, 2, 3, . . .. Prove that

this sequence converges and find its limit.
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Solution. We will first prove that

xn ≥
√

2 for all n = 1, 2, . . . .

Clearly this is true for n = 1:
x1 = 2 ≥

√
2 .

For n = 2, 3, 4, . . . we have that

x2
n − 2 =

(

xn−1

2
+

1

xn−1

)2

− 2 =
(xn−1

2

)2

+ 1 +

(

1

xn−1

)2

− 2

=
(xn−1

2

)2

− 1 +

(

1

xn−1

)2

=

(

xn−1

2
− 1

xn−1

)2

≥ 0

Therefore xn ≥
√

2 for all n = 1, 2, 3, . . ..
Since xn ≥

√
2 for all n = 1, 2, 3, . . ., we conclude that

x2
n ≥ 2 for all n = 1, 2, 3, . . . .

Therefore

xn

2
≥ 1

xn

for all n = 1, 2, 3, . . . .

Therefore

xn

2
+

xn

2
≥ xn

2
+

1

xn
for all n = 1, 2, 3, . . . .

Therefore

xn ≥ xn+1 for all n = 1, 2, 3, . . . .

Thus our sequence is a non-increasing sequence. Since it is also bounded below, by Theorem
7.3.5 it converges. Denote its limit by L:

lim
n→+∞

xn = L.

Since xn ≥
√

2 for all n = 1, 2, . . ., we conclude that L ≥
√

2. In particular L > 0. Also

lim
n→+∞

xn+1 = L.

Using Algebra of Limits, we conclude that

L = lim
n→+∞

xn+1 = lim
n→+∞

(

xn

2
+

1

xn

)

=
L

2
+

1

L
.

Thus L satisfies the equation L = L/2 + 1/L and L > 0. Solving this equation for L we get
L2 = 2. Thus L =

√
2.
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Exercise 7.3.13. Consider the sequence x1 = 0, xn+1 =
1

8
x2

n + 1, n = 1, 2, 3, . . .. Prove that

this sequence converges and find its limit.

Exercise 7.3.14. Consider the sequence x1 = 0, xn+1 =
3

16
x2

n + 1, n = 1, 2, 3, . . .. Prove that

this sequence converges and find its limit.


